Redis 切片集群
如何保存更多的数据
为了保存大量数据,我们会使用大内存云主机和切片集群两种方法。实际上,这两种方法分别对应着 Redis 应对数据量增多的两种方案:纵向扩展(scale up)和横向扩展(scale out)。
- 纵向扩展:升级单个 Redis 实例的资源配置,包括增加内存容量、增加磁盘容量、使用更高配置的 CPU。就像下图中,原来的实例内存是 8GB,硬盘是 50GB,纵向扩展后,内存增加到 24GB,磁盘增加到 150GB。
- 横向扩展:横向增加当前 Redis 实例的个数,就像下图中,原来使用 1 个 8GB 内存、50GB 磁盘的实例,现在使用三个相同配置的实例。
那么,这两种方式的优缺点分别是什么呢?
首先,纵向扩展的好处是,实施起来简单、直接。不过,这个方案也面临两个潜在的问题。
第一个问题是,当使用 RDB 对数据进行持久化时,如果数据量增加,需要的内存也会增加,主线程 fork 子进程时就可能会阻塞(比如刚刚的例子中的情况)。
不过,如果你不要求持久化保存 Redis 数据,那么,纵向扩展会是一个不错的选择。不过,这时,你还要面对第二个问题:纵向扩展会受到硬件和成本的限制。这很容易理解,毕竟,把内存从 32GB 扩展到 64GB 还算容易,但是,要想扩充到 1TB,就会面临硬件容量和成本上的限制了。
与纵向扩展相比,横向扩展是一个扩展性更好的方案。这是因为,要想保存更多的数据,采用这种方案的话,只用增加 Redis 的实例个数就行了,不用担心单个实例的硬件和成本限制。在面向百万、千万级别的用户规模时,横向扩展的 Redis 切片集群会是一个非常好的选择。
数据切片和实例的对应关系
切片集群是一种保存大量数据的通用机制,这个机制可以有不同的实现方案。在 Redis 3.0 之前,官方并没有针对切片集群提供具体的方案。从 3.0 开始,官方提供了一个名为 Redis Cluster 的方案,用于实现切片集群。Redis Cluster 方案中就规定了数据和实例的对应规则。
具体来说,Redis Cluster 方案采用哈希槽(Hash Slot,接下来我会直接称之为 Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中。
具体的映射过程分为两大步:首先根据键值对的 key,按照CRC16 算法计算一个 16 bit 的值;然后,再用这个 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。关于 CRC16 算法,不是这节课的重点,你简单看下链接中的资料就可以了。
那么,这些哈希槽又是如何被映射到具体的 Redis 实例上的呢?
我们在部署 Redis Cluster 方案时,可以使用 cluster create 命令创建集群,此时,Redis 会自动把这些槽平均分布在集群实例上。例如,如果集群中有 N 个实例,那么,每个实例上的槽个数为 16384/N 个。
当然, 我们也可以使用 cluster meet 命令手动建立实例间的连接,形成集群,再使用 cluster addslots 命令,指定每个实例上的哈希槽个数。
举个例子,假设集群中不同 Redis 实例的内存大小配置不一,如果把哈希槽均分在各个实例上,在保存相同数量的键值对时,和内存大的实例相比,内存小的实例就会有更大的容量压力。遇到这种情况时,你可以根据不同实例的资源配置情况,使用 cluster addslots 命令手动分配哈希槽。
示意图中的切片集群一共有 3 个实例,同时假设有 5 个哈希槽,我们首先可以通过下面的命令手动分配哈希槽:实例 1 保存哈希槽 0 和 1,实例 2 保存哈希槽 2 和 3,实例 3 保存哈希槽 4。
1 |
|
在集群运行的过程中,key1 和 key2 计算完 CRC16 值后,对哈希槽总个数 5 取模,再根据各自的模数结果,就可以被映射到对应的实例 1 和实例 3 上了。
在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。
客户端如何定位数据?
在定位键值对数据时,它所处的哈希槽是可以通过计算得到的,这个计算可以在客户端发送请求时来执行。但是,要进一步定位到实例,还需要知道哈希槽分布在哪个实例上。
一般来说,客户端和集群实例建立连接后,实例就会把哈希槽的分配信息发给客户端。但是,在集群刚刚创建的时候,每个实例只知道自己被分配了哪些哈希槽,是不知道其他实例拥有的哈希槽信息的。
那么,客户端为什么可以在访问任何一个实例时,都能获得所有的哈希槽信息呢?这是因为,Redis 实例会把自己的哈希槽信息发给和它相连接的其它实例,来完成哈希槽分配信息的扩散。当实例之间相互连接后,每个实例就有所有哈希槽的映射关系了。
客户端收到哈希槽信息后,会把哈希槽信息缓存在本地。当客户端请求键值对时,会先计算键所对应的哈希槽,然后就可以给相应的实例发送请求了。
但是,在集群中,实例和哈希槽的对应关系并不是一成不变的,最常见的变化有两个:
- 在集群中,实例有新增或删除,Redis 需要重新分配哈希槽;
- 为了负载均衡,Redis 需要把哈希槽在所有实例上重新分布一遍。
此时,实例之间还可以通过相互传递消息,获得最新的哈希槽分配信息,但是,客户端是无法主动感知这些变化的。这就会导致,它缓存的分配信息和最新的分配信息就不一致了,那该怎么办呢?
Redis Cluster 方案提供了一种重定向机制,所谓的“重定向”,就是指,客户端给一个实例发送数据读写操作时,这个实例上并没有相应的数据,客户端要再给一个新实例发送操作命令。
那客户端又是怎么知道重定向时的新实例的访问地址呢?当客户端把一个键值对的操作请求发给一个实例时,如果这个实例上并没有这个键值对映射的哈希槽,那么,这个实例就会给客户端返回下面的 MOVED 命令响应结果,这个结果中就包含了新实例的访问地址。
1 |
|
其中,MOVED 命令表示,客户端请求的键值对所在的哈希槽 13320,实际是在 172.16.19.5 这个实例上。通过返回的 MOVED 命令,就相当于把哈希槽所在的新实例的信息告诉给客户端了。这样一来,客户端就可以直接和 172.16.19.5 连接,并发送操作请求了。
下图说明了MOVED 重定向命令的使用方法。可以看到,由于负载均衡,Slot 2 中的数据已经从实例 2 迁移到了实例 3,但是,客户端缓存仍然记录着“Slot 2 在实例 2”的信息,所以会给实例 2 发送命令。实例 2 给客户端返回一条 MOVED 命令,把 Slot 2 的最新位置(也就是在实例 3 上),返回给客户端,客户端就会再次向实例 3 发送请求,同时还会更新本地缓存,把 Slot 2 与实例的对应关系更新过来。
需要注意的是,在上图中,当客户端给实例 2 发送命令时,Slot 2 中的数据已经全部迁移到了实例 3。在实际应用时,如果 Slot 2 中的数据比较多,就可能会出现一种情况:客户端向实例 2 发送请求,但此时,Slot 2 中的数据只有一部分迁移到了实例 3,还有部分数据没有迁移。在这种迁移部分完成的情况下,客户端就会收到一条 ASK 报错信息,如下所示:
1 |
|
这个结果中的 ASK 命令就表示,客户端请求的键值对所在的哈希槽 13320,在 172.16.19.5 这个实例上,但是这个哈希槽正在迁移。此时,客户端需要先给 172.16.19.5 这个实例发送一个 ASKING 命令。这个命令的意思是,让这个实例允许执行客户端接下来发送的命令。然后,客户端再向这个实例发送 GET 命令,以读取数据。
看起来好像有点复杂,我再借助图片来解释一下。
在下图中,Slot 2 正在从实例 2 往实例 3 迁移,key1 和 key2 已经迁移过去,key3 和 key4 还在实例 2。客户端向实例 2 请求 key2 后,就会收到实例 2 返回的 ASK 命令。
ASK 命令表示两层含义:第一,表明 Slot 数据还在迁移中;第二,ASK 命令把客户端所请求数据的最新实例地址返回给客户端,此时,客户端需要给实例 3 发送 ASKING 命令,然后再发送操作命令。
和 MOVED 命令不同,ASK 命令并不会更新客户端缓存的哈希槽分配信息。所以,在上图中,如果客户端再次请求 Slot 2 中的数据,它还是会给实例 2 发送请求。这也就是说,ASK 命令的作用只是让客户端能给新实例发送一次请求,而不像 MOVED 命令那样,会更改本地缓存,让后续所有命令都发往新实例。
其他
Redis Cluster不采用把key直接映射到实例的方式,而采用哈希槽的方式原因:
1、整个集群存储key的数量是无法预估的,key的数量非常多时,直接记录每个key对应的实例映射关系,这个映射表会非常庞大,这个映射表无论是存储在服务端还是客户端都占用了非常大的内存空间。
2、Redis Cluster采用无中心化的模式(无proxy,客户端与服务端直连),客户端在某个节点访问一个key,如果这个key不在这个节点上,这个节点需要有纠正客户端路由到正确节点的能力(MOVED响应),这就需要节点之间互相交换路由表,每个节点拥有整个集群完整的路由关系。如果存储的都是key与实例的对应关系,节点之间交换信息也会变得非常庞大,消耗过多的网络资源,而且就算交换完成,相当于每个节点都需要额外存储其他节点的路由表,内存占用过大造成资源浪费。
3、当集群在扩容、缩容、数据均衡时,节点之间会发生数据迁移,迁移时需要修改每个key的映射关系,维护成本高。
4、而在中间增加一层哈希槽,可以把数据和节点解耦,key通过Hash计算,只需要关心映射到了哪个哈希槽,然后再通过哈希槽和节点的映射表找到节点,相当于消耗了很少的CPU资源,不但让数据分布更均匀,还可以让这个映射表变得很小,利于客户端和服务端保存,节点之间交换信息时也变得轻量。
5、当集群在扩容、缩容、数据均衡时,节点之间的操作例如数据迁移,都以哈希槽为基本单位进行操作,简化了节点扩容、缩容的难度,便于集群的维护和管理。
总结
Redis使用集群方案就是为了解决单个节点数据量大、写入量大产生的性能瓶颈的问题。多个节点组成一个集群,可以提高集群的性能和可靠性,但随之而来的就是集群的管理问题,最核心问题有2个:请求路由、数据迁移(扩容/缩容/数据平衡)。
1、请求路由:一般都是采用哈希槽的映射关系表找到指定节点,然后在这个节点上操作的方案。
Redis Cluster在每个节点记录完整的映射关系(便于纠正客户端的错误路由请求),同时也发给客户端让客户端缓存一份,便于客户端直接找到指定节点,客户端与服务端配合完成数据的路由,这需要业务在使用Redis Cluster时,必须升级为集群版的SDK才支持客户端和服务端的协议交互。
其他Redis集群化方案例如Twemproxy、Codis都是中心化模式(增加Proxy层),客户端通过Proxy对整个集群进行操作,Proxy后面可以挂N多个Redis实例,Proxy层维护了路由的转发逻辑。操作Proxy就像是操作一个普通Redis一样,客户端也不需要更换SDK,而Redis Cluster是把这些路由逻辑做在了SDK中。当然,增加一层Proxy也会带来一定的性能损耗。
2、数据迁移:当集群节点不足以支撑业务需求时,就需要扩容节点,扩容就意味着节点之间的数据需要做迁移,而迁移过程中是否会影响到业务,这也是判定一个集群方案是否成熟的标准。
Twemproxy不支持在线扩容,它只解决了请求路由的问题,扩容时需要停机做数据重新分配。而Redis Cluster和Codis都做到了在线扩容(不影响业务或对业务的影响非常小),重点就是在数据迁移过程中,客户端对于正在迁移的key进行操作时,集群如何处理?还要保证响应正确的结果?
Redis Cluster和Codis都需要服务端和客户端/Proxy层互相配合,迁移过程中,服务端针对正在迁移的key,需要让客户端或Proxy去新节点访问(重定向),这个过程就是为了保证业务在访问这些key时依旧不受影响,而且可以得到正确的结果。由于重定向的存在,所以这个期间的访问延迟会变大。等迁移完成之后,Redis Cluster每个节点会更新路由映射表,同时也会让客户端感知到,更新客户端缓存。Codis会在Proxy层更新路由表,客户端在整个过程中无感知。
除了访问正确的节点之外,数据迁移过程中还需要解决异常情况(迁移超时、迁移失败)、性能问题(如何让数据迁移更快、bigkey如何处理),这个过程中的细节也很多。
Redis Cluster的数据迁移是同步的,迁移一个key会同时阻塞源节点和目标节点,迁移过程中会有性能问题。而Codis提供了异步迁移数据的方案,迁移速度更快,对性能影响最小,当然,实现方案也比较复杂。